
ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 469

Human Detection and Tracking for Autonomous Human-following
Quadcopter

K SUNITHA 1, Dr. P VENKATA NAGANJANEYULU2

1Assistant professor, 2professor & Principal
Department of Electronics and Communication Engineering

ECE Department, Sri Mittapalli College of Engineering, Guntur, Andhra Pradesh-522233

Abstract—In this project, a quadcopter which

can autonomously detect and track a person

using Deep Learning algorithm and correlation

filter tracking technique on Raspberry Pi is

presented. There are two major tasks for

autonomous detection and tracking procedure

executed by the quadcopter: First, a Deep

Learning object detection CNN-based model

named MobileNetv2-SSDLite was applied to

detect a person. This model is proved to be

efficient and fast for embedded system and

mobile devices. The MobileNetv2-SSDLite

model was originally trained on Common object

in context dataset (COCO), we kept the weights

in the Feature extractor layers (MobileNetsv2)

and fine-tuned the detection layers (SSDLite).

The purpose of this re-training task was to

specialize the model on human detection and

the evaluation after training were 98.6% for

mAP@[0.5]IoU and 93.6% for mAP@[0.75]IoU.

We used a vision-based tracking method for

human tracking task named MOSSE to work

along with the detection task. This technique

uses the bounding box’s coordinates collected

from the detection task as the initial learning

sample and consecutively updated new

person’s coordinate by online learning method.

MOSSE tracking algorithm can also help with

small occlusion due to the online-learning

ability. Usually, running a Deep learning model

like Object detection costs a lot of

computational power, especially for an

embedded computer like a Raspberry Pi.

However, our work keeps the processing speed

of the whole system fast enough for real-time

implementation by combining an expensive

Deep learning model with an inexpensive

image-processing based tracking technique. Our

proposed method can achieve 3 to 4 FPS on

Raspberry Pi which is faster than 0.63 FPS of the

detection algorithm. The mentioned results in

this article were carried out by testing in a real-

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 470

time environment with a self – developed

quadcopter model.

Keywords—autonomous quadcopter, deep

learning, object detection, object tracking,

embedded system.

I.INTRODUCTION

Object detection and tracking are classic

problems in many computer vision applications.

Many techniques have been developed for

performing object detection and tracking

without direct human intervention. Previous

approaches are usually based on object's

appearance [1] [2] [3], newer methods which

proved to be very efficient like using Haar

Cascade, Histogram of Oriented Gradient with

Support Vector Machine [4] and especially

Convolution Neural Networks (CNN). Methods

like Faster R-CNN [5], SDD [6], YOLO [7] are the

state-of-the-art deep learning CNN-based object

detection algorithms. Quadcopter has been one

of the highest developed technology recently.

Thanks to the recent development of flight

control algorithms, image processing power and

especially machine learning, quadcopters now

have the chance to be autonomous and

adopted to provide services in a wide range of

application scenario. Vision-assisted

quadcopters play a vital role in military

operations, urban surveillance or agriculture

management. Object detection and tracking

from quadcopters are important and interesting

fields within many different applications of

aerial vehicles and are required to have high

accuracy and efficiency. However, due to the

top-down camera angles and real-time

limitations, there still isn't much attention in the

intelligent vision application for quadcopters.

Other problems like the amount of space and

the weight of embedded hardware restraint

drones to perform powerful intelligent

computer algorithm. This project focused on

implementing a computer vision algorithm on a

quadcopter to detect and track a person using

CNN-based model MobileNetv2-SSDLite [8] in

conjunction with a correlation filter tracking

technique named MOSSE [9]. In term of

hardware, it is included a Raspberry Pi 3 Model

B quad-core computer, a USB camera, an

Arduino Uno R3 and

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 471

an S500

Quadcopter frame. The human detection and

tracking process was carried out using the

images collected from a USB camera mounted

on the front of the quadcopter. The tracking

subject is the first person that the quadcopter

detected and based on the reference position of

the tracked person on the images, signals will

be sent to the main flight controller to navigate

the quadcopter. The process is shown in Figure

1. The MobileNetv2-SSDLite [8] model was

trained on a 8750-images custom person

dataset which specialized for detecting human

from above. The training process (Figure 2) took

20 hours on a desktop computer which

equipped with a CPU Core-i7, 2.4GHz, Ram 8GB.

We also used some images from Penn-Fudan

Pedestrian dataset and Indoor Multi-Camera

Pedestrian Dataset of TU Graz to bring more

varieties to our dataset. The model was then

transferred to the Raspberry Pi and used the

images from a USB-Camera as input and

generates the detection and localization of

human. The object detection model then

worked along with a tracking technique in order

to detect and keep track of a human target. The

system is illustrated in Figure 3. Compared to

tracking by detection technique, tracking by

using detection along with a MOSSE tracker

proved to be significantly faster (3.14 FPS

compared to 0.63 FPS) and can also help with

small occlusions. The rest of the paper proceeds

as follow. Section II introduces the design of the

hardware platform. Section III discusses the

architecture of the system which includes

MobileNetv2-SSDLite object detection model

and the tracking technique MOSSE. The dataset,

training and evaluating process is presented in

Section IV. Section V concludes the paper and

discusses future work.

III.LITERATURE SURVEY

A. Raspberry Pi 3 Model B

The Raspberry Pi is a small single-board

computer which is equipped with a quad-core

64-bit Broadcom BCM2837 ARM Cortex-A53

SoC processor running at 1.2 GHz, 1 GB of RAM.

To achieve high real-time performance, a few

factors from the system need to be considered.

Object detection models using convolution

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 472

neural networks are computationally intensive,

so the CPU's temperature rises considerably

quick. And if the temperature reaches the

threshold, the clock speed will be decreased to

half of the maximum. Therefore, it is crucial to

apply appropriate cooling solutions to sustain

CPU performance.

B. Camera Logitech C270

It is a USB Webcam developed by Logitech and

capable of 720p video streaming. The camera

uses a high-speed USB 2.0 communication

protocol which can provide 640x480 images at

30 frames per second or higher frame rate with

lower image resolution.

C. Arduino Uno R3

The Arduino Uno is a single-board

microcontroller based on the ATmega328. It has

14 digital input/output pins (6 of those can be

used as PWM outputs), 6 analog inputs, a 16

MHz crystal oscillator. In this work, the Arduino

board was the main controller for the

quadcopter. It was used to process the value

from the IMUs (gyrometer, accelerometer, and

barometer) in order to achieve a stable self-

leveling quadcopter. At the same time, the

Arduino also received the signal from the

Raspberry Pi to control the quadcopter to

follow the person

III.PROPOSED SYSTEM

MobileNet-v2 MobileNet-v2 [8] was introduced

as a refinement of its predecessor which proved

to be more efficient and powerful. MobileNet-

v2 innovated depthwise separable convolutions

[10] structure into 3 layers instead of 2 as in

MobileNet-v1 [11]. The last 2 layers are the

same as in MobileNet-v1, which are a

depthwise convolution layer and a pointwise

convolution layer. The first layer is newly

introduced as an expansion layer. Its purpose is

to expand the input layer’s data before going

through the depthwise convolution layer.

MobileNetv2 also introduces two new features:

linear bottlenecks, and inverted residual

connections. The MobileNets-v2 structure is

shown in Figure 5. The bottlenecks block

encodes the inputs and outputs while the inner

layer encloses the model’s ability to transform

from lower-level concepts such as pixels to

higher level descriptors such as image

categories. First, the expansion layer expands

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 473

the input layer to get more data, because not a

lot of information is extracted by applying

convolutional filters on a low-dimensional

feature map. Next, depthwise separable

convolutions are applied to the expanded layer

instead of

normal convolution because of the calculation

efficiency which

can decrease the number of connection 8 to 9

times [11]. However, different from

MobileNetv1, the pointwise convolution, in this

case, will lower the channels from the previous

layer to pack the data. This idea is called linear

bottlenecks and it keeps the channels of the

feature maps fairly small compared to other

models and low-dimension layers will reduce

the number of computational parameters. The

structure is shown in Figure 6. Batch

normalization [12] layer is added after each

layer of the bottleneck convolution block to

normalize the input data for the next layer,

therefore it helps speed up the learning process.

Residual connection [13] can be understood as

the shortcut between bottleneck layers. These

connections help with the flow of gradients

through the network and will be used when the

number of the input channel and the output

channel is the same. B. SSDLite Unlike any

expensive state-of-the-art object detection

algorithm like R-CNN, Fast R-CNN or Faster R-

CNN, which generate region proposal areas

from the input images that may contain an

object then make prediction on those regions

and proved to achieve high accuracy but have

low processing speed, Single shot detector

techniques like YOLO [7] or SSD [6] require just

a single pass through the neural network and

predict all the bounding boxes in one cycle.

SSDLite was introduced along with MobileNet-

v2 [8] and was expected to be a friendlier SSD

model to mobile devices than the original. All

the regular convolutions in SSD prediction

layers is replaced with the separable depthwise

convolutions and the result is the reduction in

computational cost and parameters count. The

full architecture of the SSDLite-MobileNetv2 is

shown in Figure 7. The SSDLite-MobileNetv2

takes a 300x300x3 dimension image as the

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 474

input, uses MobileNetv2 to extract feature

maps, then detects objects with multiple scales

using 6 detection layers. The first detect layer is

attached to the expansion layer of layer 15 of

the base model. The rest of SSDLite layer is

attached to the last feature map of

MobileNetv2. The main purpose of the

additional layers is to independently detect

objects at multiple scales. The first detection

layer attached to the expansion layer of the 15

bottleneck layer is expected to

detect the small objects. As the feature maps

get smaller due to stride = 2, the resolution is

lower and the model has more details about

bigger objects. The SSD model starts the

predictions based on the Priorboxes (also called

default boxes) and use Gradient decent to

optimize the model in training phase. For each

cell in the detection feature map, 6 default

boxes are initialized with 5 different aspect ratio.

SSDLite computes both the location and the

class score from 6 detection layers using small

convolution filters. The 3x3 filters are applied

for k prior boxes on each cell of the detection

layers and outputs (c+5)k predictions for c

classes, one class for background, and four

offset value for the predicted bounding box.

After prediction, non-max suppression

technique is applied to reduce the number of

predictions in a frame to the actual number of

ground-truth objects. For every bounding boxes

which have high IoU value with ground-truth,

non-max suppression keeps the boxes with the

highest confidence and eliminates lower

confidence ones. C. MOSSE correlation tracking

technique MOSSE [9] tracker is based on

correlation filter technique. The tracker is

initialized using a selected bounding box

centered on the object in the first frame. The

target is tracked by correlating the filter over a

search window in the next frame; the location

corresponding to the maximum value in the

correlation output indicates the new position of

the target. The online update is then performed

based on that new location. To make the

process faster, correlation is computed in the

Fourier domain. Correlation task becomes an

element-wise multiplication in the Fourier

domain based on The Convolution Theorem.

First, the 2D Fourier transform of the input

image: X = F(x), and of the filter: F = F(f) are

computed using Fast Fourier Transform. The

correlation has the form: *  Y X F (1) The

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 475

symbol indicates element-wise multiplication

and the * symbol represents the complex

conjugate. Reverse FFT is then applied to

convert the output Y back to the spatial domain.

However, these methods for creating filters by

cropping a region from an image and produce

strong peaks for the target are not robust to

variations in target appearance and fail on

challenging tracking problems. Average of

Synthetic Exact Filters (ASEF) [14] and Minimum

Output Sum of Squared Error (MOSSE) [9]

produce filters that are more robust to

appearance changes and are better at

discriminating between targets and background.

The MOSSE [9] method is originally based on

ASEF [14] method but requires fewer training

images and uses online training. At first, a set of

training images and training output is required.

The desired output i y is created to have a 2D

Gaussian (2.0 ) shaped peak centered on

the target in training image (Figure 8c). The

training task is implemented in the Fourier

domain due to the simplicity of the element-

wise multiplication of the input and the output.

The relationship between the output and input

is showed as: * Y X F i i  (2) MOSSE technique is

expected to find a filter F that minimizes the

sum square error between the actual output

and the desired one. This task takes the form:

In order to find F, we take the

derivative of the function with respect to F* and

set it equal to zero: Solve for F*,

the expression of MOSSE is found

As shown in Figure 8, the filter is generated

from the cropped image and the desire output.

Throughout the tracking task, the tracker has to

quickly adapt to appearance change, rotation,

pose, various lighting condition. Therefore, the

average technique is applied to solve this

purpose. The online learning of MOSSE from

frame i is computed as:

The learning rate 

retains data from recent frames and lets the

effect of previous frames decay over time. With

= 0.15, the filter to quickly adapt to tracking

challenges while still maintaining a robust filter.

In the next frame, i 1  y is calculate using

equation (2), the offset values for the bounding

box are found by taking the mean value of all

the pixels which have the max value from i 1

 y . The tracking filter is updated using

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 476

equation (6) with the new bounding box

coordinates. Strong occlusion is detected using

Peak to Sidelobe Ratio (psr) measurement and it

is calculated as: where peak y is

the peak values, sl and sl are the mean and

standard deviation of the sidelobe. When

MOSSE is under good tracking condition, psr

ranges between 20.0 to 60.0. If psr drops under

8.0, that indicates the target is occluded or

tracking task has failed.

IV.RESULT

Training process The human detection dataset

was created using two different sources. 85% of

the dataset consisted of self-taken images from

a camera and 15% of our dataset was from

PennFudan Pedestrian dataset and Indoor

Multi-Camera Pedestrian Datasets of TU Graz.

All the image from the dataset was handlabeled

as shown in Figure 9. Due to the lack of

powerful training platform, we used transfer

learning method by taking a pre-trained model

of Mobilenetv2-SSLite on COCO dataset and

trained on our own dataset. The labeled data

was stored on a desktop computer, which is

equipped with a Core-i7, 2.4GHz, Ram 8GB. The

dataset was split into three subsets: a training

set (85%) contained 7500 images, a validation

set (15%) contained 1250 images. We found

that using the original frame resolution 640x480

from the camera was expensive for the

Raspberry Pi, so all of the images from the

dataset were resized to 320x240 to reduce the

computation cost to 4 times. The code was

written in

Tensorflow Object Detection API. We trained

the model with batch size of 8 and the learning

rate was 0.0003. Weighted_sigmoid and

Weighted_smooth_l1 were the techniques used

to calculate the loss of classification and

localization. The model was trained about 20

hours and the total loss (sum of classification

and localization loss) was approximately 2.00 as

shown in Figure 10. Mean Average Precision

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 477

was used evaluate the model's quality. Mean

Average Precision is the mean of every class's

Average Precision. AP computes the average

precision value for recall value over 0 to 1.

Precision is the percentage of correct positive

predictions, recall is the percentage of true

positive detected among all relevant ground

truths. Predictions are considered true positive

if the IoU value (Intersection over Union) is

higher than a given threshold. IoU is calculated

as: AP is defined as the mean

precision at a set of eleven equally spaced recall

levels [0,0.1, . . . ,1]: where

pr() is the measured precision at recall r . The

model was evaluated on the validation dataset

and achieved mAP@[0.5]IoU = 98.6%,

mAP@[0.75]IoU = 93.6% mAP@[0.5:0.95]IoU =

77.9%. B. Experiment Once trained on the

desktop computer, the model was transferred

to the Raspberry Pi to perform the detection

task on the quadcopter. We made an

assumption in this project that there is only one

person to be detected and tracked, the target

will be the person who has the highest

detection score. 1) Detection: Multiple test

results are shown in Figure 11. The number on

top of the bounding box is the confident value

of the detection. The model performed well on

images which are similar or slightly different

from the training dataset, but worse on images

taken from different environment. The model

failed when implemented on very challenging

scenarios where the contrast between the

human and the surrounding environment is not

obvious. 2) Tracking: Tracking algorithm can

help with small occlusion because of the ability

to learn online. Tracking task was implemented

after the target has been successfully detected.

Target's position was updated online in every

frame along with psr value. If psr was smaller

than 8.0, it was indicated that the tracker has

failed or encountered high occlusion and object

detection will be called in this situation.

V.CONCLUSION

In this paper, a human detection and tracking

system running real-time on Raspberry Pi for a

vision-assisted quadcopter is presented. This

work addresses a software architecture that

combines the accurate but slow detection

algorithm and the fast but less accurate tracking

algorithm to achieve a fast and accurate real-

time human detection and tracking quadcopter

system. One of the crucial parts of this project is

the dataset. Without a dataset which contains a

lot of images with considerable diversity, we

would not have been able to build a robust

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 478

model. The encouraging result shows that it is

possible to use convolution neural networks

along with a correlation tracker to detect and

track human objects on a quadcopter platform

in real-time. The slowness caused by the

complexity of the object detection model is

compensated by the lessexpensive tracking

algorithm and the whole system is efficiently

processed by the low-power embedded

platform Raspberry Pi 3. The average processing

speed is 3 to 4 FPS and fast enough to perform

detection and tracking on-board the quadcopter.

After the detection phase, the target's offset

position are calculated to send commands to

the quadcopter's main controller board. An

issue we encountered while testing the

algorithm on the quadcopter was the unstable

images collected by the camera due to the

oscillating characteristic of a flying vehicle

platform. Another issue was the camera latency,

which was the amount of time before the

computer received digital images from the

sensor. This latency can sometimes be high,

depends on the performance of the Raspberry

Pi, which is about 320 milliseconds. This could

lead to a decrease of the performance of the

tracking phase and therefore causes an

unstable flight. There are still many areas we

can explore to push this research further and

achieve more convincing results. In the future,

we continue to improve the object detection

model to get higher processing speed without

losing much accuracy and also try to improve

the performance of the quadcopter platform,

especially related to the self-leveling control in

order to get a better input for the detection and

tracking algorithm.

REFERENCES

[1] A. G. Kendall, N. N. Salvapantula and Karl A.

Stol, “On-board object tracking control of a

quadcopter with monocular vision,” 2014

International Conference on Unmanned Aircraft

Systems (ICUAS), Orlando, FL, USA, 2014.

[2] I. N. Thiang, Dr. LuMaw, and H. M. Tun,

“Vision-based object tracking algorithm with

ar.drone,” International Journal of Scientific and

Technology Research, 2016.

[3] M. A. Alsaedi, B. M. Albaker, H. A. Dawood,

H. abd aoun, and Z. kamel tayeh, “Quadcopter

based object detection and localization,” Iraqi

Journal for Computers and Informatics (IJCI),

2017.

[4] N. Dalal and B. Triggs, “Histograms of

oriented gradients for human detection,” 2005

IEEE Computer Society Conference on

ISSN: 2057-5688

Volume XIV, Issue I, 2022 MARCH http://ijte.uk/ 479

Computer Vision and Pattern Recognition

(CVPR'05), San Diego, CA, USA, 2005.

[5] S. Ren, K. He, R. B. Girshick, and Jian Sun,

“Faster R-CNN: towards real-time object

detection with region proposal networks,” CoRR,

vol. abs/1506.01497, 2015.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.

E. Reed, C. Fu, and A. C. Berg, “SSD: single shot

multibox detector,” CoRR, vol. abs/1512.02325,

2015.

[7] J. Redmon, S. K. Divvala, R. B. Girshick, and A.

Farhadi, “You only look once: Unified, real-time

object detector,” CoRR, vol. abs/1506.02640,

2015.

[8] M. Sandler, A. G. Howard, M. Zhu, A.

Zhmoginov, and L. Chen, “Inverted residuals and

linear bottlenecks: mobile networks for

classification, detection and segmentation,”

CoRR, vol. abs/1801.04381, 2018.

[9] D. S. Bolme, J. R. Beveridge, B. A. Draper,

and Y. M. Lui, “Visual object tracking using

adaptive correlation filters,” 2010 IEEE

Computer Society Conference on Computer

Vision and Pattern Recognition, San Francisco,

CA, 2010.

[10] F. Chollet, “Xception: Deep learning with

depthwise separable convolutions,” CoRR, vol.

abs/1610.02357, 2016.

[11] A. G. Howard, M. Zhu, B. Chen, D.

Kalenichenko, W. Wang, T. Weyand, M.

Andreeto, and H. Adam, “MobileNets: Efficient

convolutional neural networks for mobile vision

applications,” CoRR, vol. abs/1704.04861, 2017

[12] S. Ioffe and C. Szegedy, “Batch

normalization: Accelerating deep network

training by reducing internal covariate shift,”

CoRR, vol. abs/1502.03167, 2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” CoRR,

vol. abs/1512.03385, 2015.

[14] D. S. Bolme, B. A. Draper, and J. R.

Beveridge, “Average of synthetic exact filters,”

2009 IEEE Conference on Computer Vision and

Pattern Recognition, Miami, FL, 2009.

[15] M. Everingham, L. V. Gool, C. K. Williams, J.

Winn, and A. Zisserman, “The pascal visual

object classes (voc) challenge,” International

Journal of Computer Vision, 2010.

